a2 United States Patent
Cheung et al.

US009471608B2

US 9,471,608 B2
Oct. 18, 2016

(10) Patent No.:
45) Date of Patent:

(54) METHOD, APPARATUS AND COMPUTER
PROGRAM FOR MIGRATING RECORDS IN
A DATABASE FROM A SOURCE DATABASE
SCHEMA TO A TARGET DATABASE
SCHEMA

(75) Inventors: Daniel L. Cheung, Basingstoke (GB);
Sanjay Nagchowdhury, Southampton
(GB); John A. Owen, Eastleigh (GB)

(73) Assignee: International Busines Machines

Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 765 days.

(21) Appl. No.: 12/253,171

(22) Filed: Oct. 16, 2008
(65) Prior Publication Data
US 2009/0106285 A1 Apr. 23, 2009
(30) Foreign Application Priority Data
Oct. 18, 2007 (EP) oot 07118790
(51) Imt.CL
GO6F 7/00 (2006.01)
GO6F 17/30 (2006.01)

(52) US.CL
CPC ... GOGF 17/303 (2013.01); GOGF 17/30604
(2013.01)

reate list of States in Migration Path #1

Modelling the Migration Path

Choose a state to delete, This is 100
the redundant state.

v

Selact resultant state to migrate 1
racords which are currently In a A
(4a)

redundant state to

{resultant state must exist In target
schema)

(58) Field of Classification Search
CPC ..ccovvvern GO6F 17/30292; GO6F 17/30297,
GO6F 17/303; GO6F 17/30604
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,386,557 A * 1/1995 Boykin et al.

5,717,924 A * 2/1998 Kawai
2002/0174098 Al* 11/2002 Wuetal ... 707/1
2005/0149552 Al* 7/2005 Chan et al. 707/102
2007/0038651 Al* 2/2007 Bernstein et al. 707/100

OTHER PUBLICATIONS

Mikael Ronstrom; “On-Line Schema Update for a Telecom Data-
base”; Data Engineering; IEEE; Mar. 2000; pp. 329-338.

* cited by examiner

Primary Examiner — Marc Somers
(74) Attorney, Agent, or Firm — Steven M. Greenberg,
Esq.; CRGO Law

(57) ABSTRACT

There is disclosed a method, apparatus and computer pro-
gram for migrating records in a database from a source
database schema to a target database schema. A request is
received to delete a state from the source schema. The state
is marked as the redundant state. A resultant state is iden-
tified to which to migrate database records in the redundant
state and a valid migration path is calculated between the
redundant state and the resultant state.

27 Claims, 24 Drawing Sheets

$

Define a migration path array (mpa) which for a given row (x) contains the 120
following attributes: the migration path identifier {pd.), the migration path (mpJ,
the 1st indicator (ki1,) and the 2nd indicator(d2)

v

Set current migration path {cmp) to redundant state; set x = 1; set number of

migration paths nmp=1; set first incomplete migration path (fmp)=1; let list L1

= resuttant state and all other non-actionless states In target schema; let list
L3 of invalld states be empty

4
Assign redundant state to migration path attribute (mpJ in row x; make pid.=x 140

2

Let list LO be the lst of all actions in the source schema which can advance
from the redundant state to the resultant state or non-actionless-state which
also exists in the target schema.

160
Is there at least one action In list LO?
Y

150

US 9,471,608 B2

Sheet 1 of 24

Oct. 18, 2016

U.S. Patent

| ainbig

0] 4 09 0og
BUBYOS |<g— | BWOUOS |wg | BUWBUDS
1ebiel wielu| 90IN0g
08 oL

|00] $S800y aseqeieq
Juapuadag BwWaYydS-UON

0¢ oseqeleQ

|[00] SS90y aseqeie(
uepuadaq eweyos

09 |00)
BuijiepoiN

0l welsAg sseqele(

MBINBAQ WOISAS

US 9,471,608 B2

Sheet 2 of 24

Oct. 18, 2016

U.S. Patent

ez a.inbi4
paj|eoue) paso|D
[aoue) 9s0|D
BUMIOM

uadp-oy

Uo-%JOM

paliwgng
Hwans | o

BWBYOS 90I1N0S

US 9,471,608 B2

Sheet 3 of 24

Oct. 18, 2016

U.S. Patent

uadQ-o4

qg @inbi
pajjeoue) paso|)
[ooue) aso[)
Buniopm
UO-3OM uadp-ay
paniwqgns
Jwgns
P <

ewis(og wuau|

US 9,471,608 B2

Sheet 4 of 24

Oct. 18, 2016

U.S. Patent

peso|

oz ainbi

8s0JD

[goue)

Bunjiopn

UO-YJOM

[poue)

papiwugng

Hwgng
<

uadQ-9y

ENERISREI N

US 9,471,608 B2

Sheet 5 of 24

Oct. 18, 2016

U.S. Patent

0Lt

00}

¢ ainbi4

(ewayos
10648} Ul 1SIX9 1Snw d1e}s JueyNsal)
0} 9jejs Juepunpal
B Ul AJusling aie YyoIym Spiooal
o)ribiw 0} 51e)S JURYNSAl 109}

/3

"8]e]S Juepunpa.s sy}
SI SIY ‘9}9jep O} S]elS B 9S00yD

Ured UONEIBIJY SUy DUISPOIN

US 9,471,608 B2

Sheet 6 of 24

Oct. 18, 2016

U.S. Patent

oGt

ovi

oSt

ocl

ef ainbi4

£011S1| U} UoHIoE BUO 1S9 JB 8IBY} §]

eweayds 1obie} 8y} U} sisixe ose
Uoiym S1B1S-SSS{UOIIOB-UOU S0 8}e]s JUBHNSa] 2y} 0} 9Je)s Juepunpal i) woly
SOUBAPE UED UDIYM BLIBYOS 82IN0S 8YJ LI SUCHOR {[e JO 1S)} oLy} 8q 0] ISl 197

4

x="pid exyew ‘x mos u (‘dw) eynquye yyed uoiesbiw o} sjels Juepunpas ubissy

A

Adwe aq saje)s pyeaul Jo €
1511 19} ‘ewayods yobie) ul SojelS SSOJUOIITB-UOU JBYI0 [|B pUe 8]e]s Jue)nsal =
11181 181 1 =(dwy) yred uonelbiw eyeidwosul 11y j6s ¢ =dwiu syred uoneiBiw
10 Jaquinu 18s | = X 198 ‘ejels juspunpal o} (dwo) yied uonelbiw juaung 1S

A

(*gpnioredipul pug suy) pue (L p1) 101eoIpUl IS| BU)
‘(*dw) ured uopeiBlw sy} ‘(‘pid) Jeynuep! yied uopeibiw sy} :seinquie Buimojio}
ay} surejuo9 (%) mol usalb e Joj yoium (edw) Aewre yred uonerBiw e auysq

[# (ied UONEIDIY Ul SSTers [0 151 o1ear))

US 9,471,608 B2

Sheet 7 of 24

Oct. 18, 2016

U.S. Patent

Ocy

00¥

ay a.nbi4

(*dw) moi juaiing ayj 10}
yred uonesbiw ay} 0} (dwo) yied uoneibiw jusiund 198

¢("epl) pireaut ou
% (*Lp1) e1ejdwoou] yred

X 1aquinu yjed 0}05)

2# Uied uonelDipy Ul Selels Jo 1s)] ojeal)

US 9,471,608 B2

Sheet 8 of 24

Oct. 18, 2016

U.S. Patent

19153 4

oy anbi4

$UDJOB 8UO Uey} 2I0p

PileA 0} (*Zpl) Joyedipu] puooas

09 R 616/dWo 0} (*pi) JOIEOIPUI IS1) 165

£,9]e]s lue)nsal=a)els

(sabiueyo 0) paxpo) mou ere ejels @ uoioe peppe ayj)
(*dwi) x

ovl Mol 10} yied uonesBiw o} ppe 0} UOIOR ¥ 8]BlS 8S00YD)

a1ejduwiod 01 1es
st (*1p1) Jojeaipul
1Sl 8y} 7 pljeAul
03 ("gpt) Jojeoipul
puU0d8s 199

&€
1S1] Ul ISIXO J0U SO0P pue 810joq Yied
uoneafiul syy w paseadde jou sey
Uolum alejs SSo|uoiloe-ucu e 1o ojels
juelnsal oy} Joyyo o) dwd ul alels 1se|

01} SIUBADE 0} UOIJOR BUO I1Sed] B
0EF

€% Uied UoReIbIy Ul S91els JO 181 91ea1)

US 9,471,608 B2

Sheet 9 of 24

Oct. 18, 2016

U.S. Patent

141 4*

099

A

BUOILPPY ISE

0sS

ajeidwoou) o} (**{p1)
loreoiput isnj 185

0Eg

0cs

0LS

009

pien 0} (*~Zp!) 10JedIpu| puodss
% 919[dwoo o} (**'|pi) J0jesipul 1811} 185

£o]e]s JuB)nNsai=olelg

("“dw) uyred uopeiBiw
oy} 01 pepuadde ojejs pue uojjoe
dw wpejul ueynses yum dul Jusiind ppy

A

sdw jo sequinu = (**pid) pi
uied 1os {1+ =(dwu) sdw jo Jogquunu 1o

3

Aeiie yped uoyeibiw 0] mos mau ppy

+

uolor 1xau 9S00y =

pt @1nbi4

V# UTed UoneIbIpy Ul SaTels Jo 151] o1eai)

US 9,471,608 B2

Sheet 10 of 24

Oct. 18, 2016

U.S. Patent

(dwy) yred uoneibiw
oce a)e|dwooul 1s11} 8y} JO 8N[eA 8y} 0} X 195

£10s useq
SJ0JEOIPUI PU0JSS |[B BABH

ésdw jo Jaquinu
uey) sse| (x) pessaaoid
Buiaq ApuaLind Mol sj

00¢€

o oinbi4

G# Ured uonelbi\ Ui Sayels Jo ISl sjesin

US 9,471,608 B2

Sheet 11 of 24

Oct. 18, 2016

U.S. Patent

0L9

S09

X=X

*

dwy
0} | ppe UsY) X Se enjeA aWes ay} sey
(dwy) yjed uoneBiw syeidwosul 1S4y Ji

Lpeyijuspl
sdw Jo Jeguinu=x

}7 inbi4

o# Uied UONeIDIN Ul S81els JO 11| e1edi)

US 9,471,608 B2

Sheet 12 of 24

Oct. 18, 2016

U.S. Patent

0Le

B eunbi4

(dwy) yyed uonesbiw
9191dwodu 1S11} B} JO 8njeA ey} 0} X 18

Z# UTed UONEIDIN Ul Salels Jo 181] a1eal)

US 9,471,608 B2

Sheet 13 of 24

Oct. 18, 2016

U.S. Patent

aloidwosy)
@ oce o1 ('P1) JOEDIPU] 181} 105 yy aanbig

Pilea o} ("Zpl) Jojeolpuy
pucoas pue ejejdwed o}
(*1p1) JojeoIpul s} 1o

LOJels Jueynsel=ejelg

0cs
008 (*dw).x moJ o} ppe pue yred uopeiBius
JUB.IND O} UORJE PUR 8JB)S Pelos]es ppy
06 hr \opoE Sjoeles 16SN _
082 olelS Pojo9|es Ul JjNSal UOJYM BLISLOS
eaunos/efiie) u) suogoe ||e Juesesd
0LL | ~ oels ,m_onmm‘_mw.:]
71184 U] sejejs [je jusse,
} o d < m v
X N
= duiu Jos ‘ejels Juepunpay
a2y 0} (dwo) dw Jueuno jos
X 0} 1es (xp|d) pj ured yym
(edw) Aeue yped uogeibiw A0S . ¥ Ureq uoneibin

0} MOJ MOU PPV [L+X =X

)74

Ul SeIels O 151 918er)

US 9,471,608 B2

Sheet 14 of 24

Oct. 18, 2016

U.S. Patent

(a1e38 sy Buisn aje)s Jue)nsai 0}

yred uonesBiw pifeA e jou s a1ay} i 0‘_:@_“_

- PifeAul 1 €7 1s1) 0} pappe ejels)
losn 0} efessow Jou9 Juasald

*

€1

ov.

1si| O] ppe pue |7 }sl| wol Q7 ul
> palosjes uonoe wol) Bunnsel Jo
0z. 171 Wioyy pejosjes oiels eowey

&

071181 woly
uoioR Pa}IBIeS BAOWISY

181} WioJ} pe1osjes exels e 1o
07 11| WOl pajos|es uoloe

0L

ue elA a1ay 186 am pig

éiesn ayy
0} Juesaid 0} yjed uoneibiw
PIleA SUO I1SE9] 1B 949y} S

004

6% Uieg uoneibipy Ul Sojels Jo 1s1] a1eai)

US 9,471,608 B2

Sheet 15 of 24

Oct. 18, 2016

U.S. Patent

0gc

&0 U1 UOIIOB BUO UBY} IO\

gee

9)19|dwosul 0}
(*1) Joyedipu) Js1i 108

] ¥4

pifea o (Zp1) Jojyesipul puooes
» 819|dwod 0} (|.py) Joyedipul i1y 198

£ 81els Juensai=alelg

X mod 1o} (xdw) yred uoneibiw
sy pue (dwo) yyed uoneibiw Jusund
8y} y1oq 0} 07 1s)| W Uonde pajeldosse
S1l pue § puadde pue ajels asooyn

4

00c

07 38)] ui suoide
[le Aq payoeal oq ued yslym sojels isn

O1# (ied UOHeIBI Ul

SBIEIS JO 151] 51810

US 9,471,608 B2

Sheet 16 of 24

Oct. 18, 2016

U.S. Patent

016

Mt 84nbi4

syjled
uoneibiw juesaid

| T# Yred Uoneibiy Ul Sojels JO 1s]| 91eaid

US 9,471,608 B2

Sheet 17 of 24

Oct. 18, 2016

U.S. Patent

ov0lL

020l

] 10]%

0001t

eg ainbi4

8]e}s Juepunpal ey} uo
pauuopad aq o) tuoioe uonelbiw
wielul Mojje o1 1duas nst eyepdn

Juonoe uonelbiw
wuaul sy} yyed uone.bi
SY} Ul uofoe Jsily Y S|

8je)s Juepunpail ey} ut (4y)
sp1ove |je Ayuep o} jduos (wpi)
uoneibiw eyep wuajui aepdn

*

juepunpal se
e1e]s Juepunpas yiew o} 1duas (nsi)
olepdn ewoayds wusul aepdn

A

yred uoneibiw pa}osjes s8I0y

[# SIdIdg a1epan areaid

US 9,471,608 B2

Sheet 18 of 24

Oct. 18, 2016

U.S. Patent

OLEL

s1duos wpy
‘0s)] ‘wip! ‘ns1 aABS

SHY |8 uo uolde xou uioyed o}
1duos uojelBiw ejep jobie) aepdn

¢ured
uoljeibiul jo pus payoesy

Blueyos 1o6se} wol)
91B]S JUBpUNpal 8A0LWS! O} 1dLoS
(nsy) arepdn ewsyos jebie) ayepdn

080}

A

SHY |/e uo uonoe

P> 1s| wuopad 01 3duos wpl ayepdn
00}

090}

ewayos
wusju 0} 186.1e] Wol}
Q]IS 10} LOIONIISUI BAOW

eweoyos
1061e} Ut 1sIX@ AjUo aje)s
oU 3y} JO UOISIBA 9} S90(]

0501

qg ainbi4

c# S1dudg arepdn oresid

US 9,471,608 B2

Sheet 19 of 24

Oct. 18, 2016

U.S. Patent

0EtL

o6 ainbi4

ewayos wiaul o} 19b1e)
W01} UORDR 10} UOONIISUI SAOWN

Bwayds
1eb.e} By) WOl Uasoyd
yied uonesBiw syj u uoyoe:
1SJ1} 8Y} JO UOISIOA 8U} S

VAN

¢# S1du0S arepdn ereald

US 9,471,608 B2

Sheet 20 of 24

Oct. 18, 2016

U.S. Patent

oecl

ocel

oLcl

0021

1duos
uonelBiw eep 10b.ie] alnoexy

A

1duos
ajepdn ewseyds 106ie) 21ndexy

+

1duos
uone.sBiw ejep wusiu andexgy

4

1duos
alepdn ewoyds WISl 81ndax]

9 ainbi4

U.S. Patent Oct. 18, 2016 Sheet 21 of 24 US 9,471,608 B2

-
™ o
[e 0}
© (]
3 —» 3
o L
o T
[
>
¥
I D 9 S
B > & » 3 i
bl
©
5P 3
©
= :
@ ;
_S Y
) '
% @ = .
g N~
o) o
Z 3
2

U.S. Patent Oct. 18, 2016 Sheet 22 of 24 US 9,471,608 B2

@

o
©
®©
com’co
wn n o
X
™
© N~
©,
o QN Tp]
] S N‘U ©
—» 3 = N e © T
®©
¢
o TP o
©

Interim Schema
Figure 7b

U.S. Patent Oct. 18, 2016 Sheet 23 of 24 US 9,471,608 B2

(o]
o«
b —» 3
(4p)
«
io% N‘% KN
0] » SIS P
—
«©
» P &
«©

Target Schema
Figure 7c

US 9,471,608 B2

Sheet 24 of 24

Oct. 18, 2016

U.S. Patent

g ainbi4

yied uoielbdiw ul
SuUoljoe Jo Jaquinu , uonoe 1xau wuouad
0} SpJooal Juepunpai ajepdn -

{WpT) 10105 UCHBIDNN B1eq 19PIEL

spJodal

juepunpail ||e uo uonoe is| wliouad
(os|e} 0501 1@ 1581 J)) -
Ple)s JuepuNpal Ui spJodal jje Auapi -

(WpT) 101105 UoReIBIN ereq Widiu]

BWwayos 10b.1e] wol)
Uoljoe 10} UoljoNIISUl 9AOWSY
(enn 0zt 1 1e 188} YY) -

Bwayos 18bie]
LOJ} 8)e]S Juepunpal srowey -
rWayos 1obie) wouj
8]e]S 10} UOHONIISUl 8AOWSY
(eni} 0G0 1e 1se} §l) -

EIVEVEISIIENT]
0} UOIjok 10} UonoNSUl ppe
(enny 0zgLL 1B 1S9) -

BUWIBYOS wiisul
O} 9le}s 10} uolonisul ppe
(enJ1 0501 1R IS)) -

ale]s Juepunpal uo pauuoyad aq 0}
uoljoe uoljeiBiw wusiul MojlyY

(enJ1 0g01 1e IS8} §)) -

alels epunpal = QY -

(NS 1d10G ejepdn ewayog Wio|

US 9,471,608 B2

1

METHOD, APPARATUS AND COMPUTER
PROGRAM FOR MIGRATING RECORDS IN
A DATABASE FROM A SOURCE DATABASE

SCHEMA TO A TARGET DATABASE
SCHEMA

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority under 35 U.S.C. §119(a)
to European Patent Application Serial Number 07118790.0
filed Oct. 18, 2007 entitled A METHOD, APPARATUS
AND COMPUTER PROGRAM FOR MIGRATING
RECORDS IN A DATABASE FROM A SOURCE DATA-
BASE SCHEMA TO A TARGET DATABASE SCHEMA,
the entirety of which is incorporated herein by reference. No
new matter has been added.

FIELD OF THE INVENTION

The invention relates to database schemas and more
particularly to the upgrade of a source database schema to a
target database schema.

BACKGROUND OF THE INVENTION

Database systems typically use a schema for defining how
a database is to be used. Such a schema may specify the
types of records that a database system manages and also the
rules and relationships associated with these record types.
Thus a schema may specify that a user is allowed to perform
actions (operations) on a record such as cancel, delete and
modify. The schema may also define, for example, exactly
which fields in a record may be modified and who is allowed
to make such changes.

By way of example only, change control systems exist
today for tracking changes made to the source code for
software projects. Such change control systems typically use
a database schema of the type discussed above. A database
schema for a change control system may define record types
of: defect; feature; test record; verification record etc. Rules
will then define how such records may be inserted, modified,
deleted etc.

Software projects are increasingly using iterative devel-
opment in order to flush out problems and resolve risks and
issues as early as possible. The project manager may require
updates to the change control system at the beginning of an
iteration. This means that the schema used by the change
control system may need to be updated many times during
the duration of the software project.

A change control schema may have levels of security
defined which allow user defined roles to update particular
fields for each record type. For example, only an adminis-
trator may change the ownership of a defect but any one can
add a comment to a defect.

The schema may also be used to integrate the Change
Control system with other tools, such as a test case man-
agement system and/or a requirements management system.

In order to create a schema, a schema administrator needs
to understand:

What the schema will be used for

Who will use the schema and their associated user role

What other tools or services will interact with the schema

The workflow (process) associated with the schema.

Without some kind of intervention, schema migration
may cause records within the database to exist in a redundant
and thus invalid state. For example schema version 1 may

10

15

20

25

30

35

40

45

50

55

60

65

2

allow records to be in a state of cancelled. The subsequent
version of the schema may no longer define the cancelled
state. Some records in the database will, however, probably
have a cancelled state associated with them and this will
cause an exception to be thrown when migration is
attempted. Such an exception will typically mean that it is
not possible to migrate the database to the new schema.

As schema changes can be quite complex it is often not
until the actual upgrade is executed that any data integrity
problems are discovered (i.e. during a change slot to upgrade
the production system which may be outside working
hours).

Additionally, schema changes are not necessarily applied
immediately to schema items. Indeed multiple schema
changes may be batched together and applied to schema
items in one go. This means the schema administrator must
know the consequence of all the changes in order to identify
the required manual changes to the database containing the
schema items. If the schema changes span many months, or
even years, this can be difficult.

Furthermore, many software projects involve teams
located in multiple geographic locations. Copies of the
database exist in each location and changes are replicated
between locations to keep them in sync with each other. This
also applies to schema changes. The schema changes and
associated data migration must be made at all locations
before users can update a database in any one location.
Whilst the schema updates can be automated, the data
migration can not. This can lead to lengthy outages and
complex logistics in order to bring all the databases and their
associated data up to the required level. This also requires
local system administrators to understand the changes
required in order to apply them.

Solutions describing workflow and schema evolution are
known, for example: co-pending patent application of the
assignee, attorney docket number DE9-2006-0023.

Other documents of interest are:

“Scientific Workflow Management by Database Manage-
ment” by A Ailamaki, Y Ioannidis, M Livny (Department of
Computer Sciences, University of Wisconsin); “Managing
Evolving Workflow Specifications with Schema Versioning
and Migration Rules” by G Joeris and O Herzog (Intelligent
Systems Department, TZI—Center for Computing Tech-
nologies University of Bermen); and “Schema Evolution in
Process Management Systems” by Stefanie Beate Rinderle
from Memmingen (Dissertation in October 2004); and
“Dynamic Workflow Schema Evolution Based on Workflow
Type Versioning and Workflow Migration” by Markus
Kradolfer and Andreas Gepper.

These documents describe the need for workflow engines
to cope with change but none describes how to cope with the
removal of a state from a schema and what is to happen to
affected records.

“Workflow Evolution” by F Casati, S Ceri, B Pernici and
G Pozzi (Dipartimento di Flettronica e Informazione—
Politecnico di Milano) also deals with the concept of a
changing schema and does briefly discuss the removal of a
task from a workflow, in the form of a “RemoveSuccessor”
primitive. This document does not however discuss the
detail of how to cope with database records in a redundant
state as a result of the deletion of a state from a database
schema.

SUMMARY OF THE INVENTION

According to a first aspect, there is provided a method for
migrating records in a database from a source database

US 9,471,608 B2

3

schema to a target database schema, the method comprising:
receiving a request to delete a state from the source schema;
marking said state as the redundant state;

identifying a resultant state to which to migrate database
records in the redundant state; and calculating a valid
migration path between the redundant state and the resultant
state.

The redundant state is preferably marked as redundant in
an interim migration schema.

In one embodiment user input is received indicating the
desired resultant state.

In one embodiment, one or more valid and invalid migra-
tion paths are identified. A migration path is preferably
invalid if it does not permit migration to the resultant state.

In one embodiment, a user is presented with at least one
valid migration path between the redundant state and the
resultant state. The user is in this embodiment permitted to
select a valid migration path to which to migrate database
records in the redundant state.

In one embodiment, in order to calculate a valid migration
path, it is determined whether an action exists in the source
schema to advance a record from the redundant state to a
first state in a possible migration path.

If there is no such action (the redundant state is action-
less), the user is preferably presented with one or more
actions which advance from a state in the source schema to
the first state. The user is then preferably permitted to select
one of the presented actions to form part of a possible
migration path.

If an action does exist, the action is preferably presented to
the user for selection.

It is preferably determined whether the selected first state
is part of a valid migration path. If this is not the case, then
the user is requested to select another first state.

In one embodiment, if the redundant state is actionless,
then an interim schema is used to permit database records in
the redundant state to be moved between the redundant
actionless state and the first state.

Database records are preferably migrated to the first state
in accordance with the interim schema.

A target schema is preferably created by which to migrate
database records in accordance with, the redundant state
being absent from the target schema.

A valid migration path is preferably used to migrate
database records in the redundant state to the resultant state,
in accordance with the target schema.

Database records in the redundant state are preferably
identified.

According to a second aspect, there is provided an appa-
ratus for migrating records in a database from a source
database schema to a target database schema, the apparatus
comprising:

means for receiving a request to delete a state from the
source schema;

means for marking said state as the redundant state;

means for identifying a resultant state to which to migrate
database records in the redundant state;

and means for calculating a valid migration path between
the redundant state and the resultant state.

According to a third aspect, there is provided a computer
program comprising program code means adapted to per-
form the following method steps when said program is run
on a computer:

10

15

20

25

30

35

40

45

50

55

60

65

4

receiving a request to delete a state from the source
schema;

marking said state as the redundant state;

identifying a resultant state to which to migrate database
records in the redundant state; and calculating a valid
migration path between the redundant state and the resultant
state.
It should be further understood by one of ordinary skill that
the computer program adapted to perform the method can be
is accessible from a computer readable storage medium.

BRIEF DESCRIPTION OF THE DRAWINGS

A preferred embodiment of the present invention will now
be described, by way of example only, and with reference to
the following drawings:

FIG. 1 provides an overview of a database system in
accordance with a preferred embodiment of the present
invention;

FIGS. 2a, 2b and 2c illustrate exemplary rules defining
the workflow for source, interim and target schemas;

FIGS. 3, 4a to 4k shows the way in which one or more
valid migration paths are calculated and presented to the
user, in accordance with a preferred embodiment of the
present invention;

FIGS. 5a to 5c illustrate, in accordance with a preferred
embodiment of the present invention, the update of the
scripts used to update the schema rules and migrate database
records;

FIG. 6 shows, in accordance with a preferred embodiment
of the present invention, the execution of the scripts used to
update the schema rules and migrate database records;

FIGS. 7a, 7b and 7¢ show more complex exemplary rules
defining the workflow for source, interim and target sche-
mas; and

FIG. 8 shows, in accordance with a preferred embodiment
of the present invention, the contents of the scripts used to
migrate database records.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

A mechanism is described for migrating database records
from a source schema (source database schema) to a target
schema (target database schema) when record states defined
as permissible in the source schema have been deleted from
the target schema.

An overview of the system according to a preferred
embodiment is shown in FIG. 1. A database system 10
comprises a database 20. The records in database 20 may be
in any number of states, as defined by a source schema 30.
Changes to data in database 20 (such as progressing the data
records between states) may be made using a Schema
Dependent Database Access Tool 70. A Schema Dependent
Database Access Tool 70 uses the schema rules to access the
database. This tool is the tool that normal end-users would
use to access the database. One example of such a tool is a
defect tracking tool such as IBM® Rational® ClearQuest®.
(IBM, Rational and ClearQuest are registered trademarks of
International Business Machines Corporation in the United
States and/or other countries.)

A simplified exemplary schema is shown in FIG. 2a. The
source schema shown in FIG. 2a indicates that records may
be in one of four states. A record may have been “submit-
ted”, the record may be being worked on (“working”), the
record may have been “closed”, or the record may have been
“cancelled”. In order to progress records between possible

US 9,471,608 B2

5

states, the source schema 30 defines certain actions which
can be invoked using the Schema Dependent Database
Access Tool 70. Thus for a record to be classed as “submit-
ted”, the “submit” action is performed. An action of “work-
on”, results in the “working” state, a “close” action closes a
record and, finally, performing the “cancel” action, puts the
record into the cancelled state.

At some point, a database administrator may desire to
upgrade the database schema to a target schema 40. An
exemplary target schema is shown in FIG. 2¢. It can be seen
from this figure that the “cancelled” state has been deleted
and only the record states of “submitted”, “working” and
“closed” are now permissible.

Simply upgrading the database to the target schema of
FIG. 2¢ is however extremely likely to cause data integrity
problems. This is because cancelled records might well still
exist in the database. Such records, in accordance with the
new target schema, will no longer be valid.

The present invention, in accordance with the preferred
embodiment, alleviates this problem by enabling the migra-
tion of invalid data records to a state that is valid in the new
target schema.

The solution disclosed uses an interim schema to define a
migration path between the source schema and the target
schema. Modelling of all three schemas is performed using
a modelling tool 60.

An exemplary interim schema is shown in FIG. 2b. As
indicated above, the state of cancelled, is no longer permis-
sible according to the target schema. The interim schema
defines the action(s) to be applied to cancelled records in
order to progress them to a state that is valid in the target
schema. Thus the interim schema of FIG. 25 indicates that
cancelled records can be re-opened and then submitted in
order to move the record into the submitted state. Such
records can then, for example, be progressed to the “closed”
state using the “work-on” and “close” actions. As shown in
FIG. 2¢, in addition to deleting one or more states, the target
schema may define new actions such as a cancel action to
move a submitted record to the closed state and a cancel
action to move a working record to the closed state.

There are several problems associated with simply remov-
ing a state (the redundant state) from a schema. For example,
the redundant state may be actionless. In other words the
redundant state may not have an action associated with it
that enables progression from the redundant state to any
other state, including the desired state. (Conversely, a non-
actionless state does have an action to progress from that
state to another state.)

In the example the “Cancelled” state is actionless, which
means that even before it was deleted, there was no way for
a “Cancelled” record to get to any other state. Even using a
schema dependent database access tool there are no rules
defined to advance any records in “Cancelled” state to
another state. Therefore it is currently impossible to obey the
rules of the schema when migrating a cancelled record to,
for example, the state of “closed”.

The present invention, in accordance with a preferred
embodiment, solves this problem by creating an interim
schema which includes the necessary rules to allow migra-
tion from the source schema to the target schema. In our
example, this is achieved by defining a rule to allow a
“Cancelled” record to move to the “Submitted” state.

Secondly, as alluded to above, the migration from the
source to the target schema may abort if there are “Can-
celled” records, that is records which are in a state that no
longer exists in the new target schema.

10

15

20

25

30

35

40

45

50

55

60

65

6

Currently there are two approaches are possible to resolve
this problem:

(1) The Schema Administrator needs to determine a
strategy for dealing with “Cancelled” records before
upgrading the database to the target schema. This needs
to provide temporary, additional rules to allow “Can-
celled” records to move to “Closed” state, which then
needs to be executed before the original changes lead-
ing to the target schema can be applied.

(2) The System Administrator performing the database
upgrade could use a non-schema dependent database access
tool 80 to upgrade “Cancelled” records directly to “Closed”
state. This approach assumes that the System Administrator
knows that the records should be advanced to “Closed” state
and not another state, such as “Working” state. Bypassing
the schema rules in such a way also leads to activities not
being performed (e.g. informing the record owner that their
record is now closed, or sending an instruction to the test
system to close the test case associated with the record, or
updating an audit trail to indicate that the record has been
moved to “Closed” state). Additionally, as no rule exists to
allow a “Cancelled” record to advance directly to “Closed”
state, the changes performed by the System Administrator
would not support schema database integrity.

The present invention is particularly concerned with the
deletion of a state from a database schema. However it
should be appreciated that the solution disclosed does not
preclude the possibility of other changes being made to the
database schema (e.g. the insertion of a state and the update
of an existing state).

The solution of the preferred embodiment will now be
described with respect to a more complicated state diagram
(source schema) as shown in FIG. 7a, interim schema 75,
target schema 7¢ and the flow charts of FIGS. 3, 4a to 4%, 5a
to 5¢ and FIG. 6.

The state to be deleted is known herein as the redundant
state.

Four Examples will be discussed:

1) An action does not exist in the source schema to
advance from the redundant (actionless) state to another
state;

consequently an action is selected to use and that action
leads to a state which is part of a valid migration path;

2) An action exists to advance from the redundant state to
another state which is part of a valid migration path;

3) An action does not exist which advances from the
redundant state to another state;

consequently an action is selected to use but that action
leads to a state which is only part of an invalid migration
path; and

4) An action exists to advance from the redundant state,
but that action leads to a state which is part of an invalid
migration path;

EXAMPLE 1

As shown in FIG. 3, a state (the redundant state) is chosen
for deletion from the source database schema of FIG. 7a
(step 100). In the example, the redundant state is R0. A
resultant state is chosen to which to migrate records that are
currently in the deleted or redundant state to (step 110). The
resultant state must be one that exists in the target schema of
FIG. 7c¢. In the example, R1 is the chosen resultant state.

Processing then proceeds to FIG. 4a. The system defines
at step 120 a migration path array (mpa) which for a given
row (x) has four attributes: a path identifier (pid,); a migra-

US 9,471,608 B2

7

tion path (mp,); a first indicator (idl,); and a second
indicator (id2,). The meaning of these attributes will become
clear shortly.

The system sets up various variables (at step 130) for use
during processing. These are as follows:

A current migration path (cmp) variable is set to the
redundant state, RO0;

x is the current row in the migration path array (mpa)
being processed and is initialised to 1;

A number of migration paths (nmp) variable identifies the
number of rows in the array and is initialised to 1;

A first incomplete migration path (fmp) is set to 1. This
allows the system to keep track of the first row in the
migration path array which has its first indicator set to
incomplete;

List L1 includes the resultant state and all other non-
actionless states in target schema; and

List L3 of invalid states is empty. 1.3 indicates which
states do not lead to a valid migration path.

The way in which these variables are used will become
clear.

At step 140, the redundant state is assigned to the migra-
tion path attribute in row x (mp,). The path id in the same
row (pid,) is also made equal to x.

Path Id Migration Path 1st Indicator 2nd Indicator

1 RO

Step 150 dictates that list L0 is then populated with all the
actions in the source schema which can be advanced from
the redundant state to the resultant state or a non-actionless
state which also exists in the target schema.

In this example, the redundant state R0 does not have any
actions which advance that state as dictated above. Thus
processing moves from the test performed at step 160 to
FIG. 4h.

At step 750 it is determined whether the second indicator
is set. It isn’t and so all states in [.1 are presented to the user
at step 760 who then selects a state at step 770. In the
example, the user selects S0. All actions in the target/source
schema are presented which result in the selected state (step
780). In this example a0 is the only relevant action and so
the user selects this at step 790. The selected state and action
are then added to the current migration path variable and
also to row the migration path attribute in row x (mp,) of the
mpa at step 800.

It is determined at step 810 that SO is not the resultant state
and so the first indicator for row x (id,) is set to incomplete
(D in row 1 (see below):

10

15

20

25

30

35

40

45

50

8

As indicated above, the migration path with a path id of
1 (mp,) is incomplete and it is not marked as invalid.
Consequently, the cmp is set to the migration path for the
current row (step 420). Thus the cmp now reads R0-a0-S0.

At step 430 of FIG. 4c, it is determined whether there is
at least one action to advance from the last state in the
current migration path (S0) to either the resultant state or a
state which is:

(1) Non-actionless; and

(i1) Has not appeared in the migration path before. This
ensures that migration path does not involve an infinite loop;
and

(ii1) Does not exist in L.3. L3 is currently empty and lists
the states which cannot lead to a valid migration path.

As L3 is currently empty and it is possible to advance
from SO to either state S1, S2 or S3, the user may choose one
such state (e.g. S3) and an associated action to be added to
the migration path attribute for row x (mp,; step 440). Note
that the added state and action are now locked to changes.

Path Id Migration Path 1st Indicator 2nd Indicator

1 R0-a0-80-a3-S3 I

As this is not the resultant state, it is determined whether
there is more than one action to advance from state S0 to
another state (step 470).

The next action is chosen (al) by the system at step 500
of FIG. 44 and a new row is added to the migration path
array at step 510.

At step 520, the number of migration paths is incremented
by 1 (nmp=2) and the path id for the row which equals the
number of migration paths (pid,) is set to be the same as
the number of migration paths (path id,,,,, therefore=2).

At step 530, the cmp value (R0-a0-S0) is added to the
migration path attribute of row 2 (mp,,,,) of the migration
path array with action chosen at step 500 and the resultant
interim migration state (S1). It is then determined at step 540
whether the resultant state has been reached. Since the
answer is no, the first indicator for row 2 (idl,,,,,,) is also set
to I (step 545).

nmp

Path Id Migration Path 1st Indicator 2nd Indicator
1 R0-a0-80-a3-83 I
2 R0-a0-80-a1-S1 I

Path Id Migration Path 1st Indicator 2nd Indicator

1 R0-a0-S0 I

The system advances to row x (1) in the migration path
array at step 400 of FIG. 4b. It is determined at step 410
whether this path is marked as incomplete and not invalid.
The first indicator indicates whether a migration path is
Complete (C) or Incomplete (I). A migration path is com-
plete when it ends with the resultant state (in which case the
second indicator is set to Valid) or it is not possible to reach
the resultant state (in which case the second indicator is set
to Invalid).

55

60

A step 560, it is determined whether there are any
additional actions that will progress from state SO. In this
instance, there is one final additional action, a2.

The next action is chosen at step 500 and a new row is
added to the migration path array at step 510. The number
of migration paths variable is incremented to 3 and the path
id for row 3 (pid,,,,,,,) is set to 3 also (step 520). The current
migration path is added with the resultant interim migration
path (S2) and action appended (step 530). As S2 is not the
resultant state, (step 540), the first indicator is set to incom-

plete (step 545):

US 9,471,608 B2

Path Id Migration Path 1st Indicator 2nd Indicator Path Id Migration Path 1st Indicator 2nd Indicator
1 R0-a0-50-a3-S3 I 1 R0-a0-80-a3-83 C I
2 R0-a0-80-a1-S1 I 2 R0-a0-80-a1-S1 C I
3 R0-a0-80-a2-S2 I 5 3 R0O-a0-80-a2-82 I

A test is performed at step 560 to determine whether a2
was the last additional action. Since the answer is yes,
processing proceeds to FIG. 4e.

At step 300 of FIG. 4e, it is determined whether the row
currently being processed (x; 1) is less than the number of
migration paths (nmps). As the nmps is currently 3, whilst x
is 1, the answer is yes. Consequently, because all the second
indicators have not been set (step 320), x is set at step 330
to the value of the first incomplete migration path (fmp) as
denoted by an indication of I in the idl column—in this
instance 1. The system then advances to this row at step 400
of FIG. 4b.

As the migration path in row 1 is incomplete and not
invalid (step 410), the cmp is set to the migration path for the
current row (i.e. R0-a0-S0-a3-S3). At step 430 (FIG. 4¢), it
is determined whether there is at least one action to advance
from the last state in the current migration path (S3) of row
x (1) to either the resultant state or a non-actionless state
which has not appeared in the migration path before and
does not exists in list L3. In this instance, the answer is no.
This is because the current state in row x is S3. The only
advancement from S3 is to S6 which is actionless as opposed
to non-actionless. For this reason the second indicator is set
to invalid and the first indicator to complete at step 435 and
processing progresses to FIG. 4e:

Path Id Migration Path 1st Indicator 2nd Indicator
1 R0-a0-50-a3-S3 C I
2 R0-a0-80-a1-S1 I
3 R0-a0-80-a2-S2 I

At step 300, it is determined whether the row currently
being processed x is less than the nmps. Since x is still 1, the
answer is yes. All second indicators have not yet been set
(step 320) and so x is set to 1 (the row containing the first
incomplete migration path) at step 330.

At step 400 of FIG. 44, the system moves to row 1. Since
the path is incomplete and also invalid (step 410), processing
proceeds to FIG. 4f, where it is determined at step 600
whether x equals the number of migration paths identified
(i.e.3). X is still 1 and therefore the answer is no. At step 605
if the fmp has the same value as x (it does in this case) then
1 is added to the fmp. Fmp is therefore now 2. The row being
processed, x, at step 610 is incremented to 2.

The system advances to row x (2) at step 400 and as this
path is incomplete and not invalid (step 410), the current
migration path is set to the migration path for the current row
(i.e. R0-a0-S0-a1-S1) at step 420.

It is determined at step 430 of FIG. 4¢ whether there is at
least one action to advance from the last state in the
migration path (S1) to either the resultant state or a non-
actionless state which has not appeared in the migration path
before and which does not exist in list L3. The answer is no
because the only additional action to advance from S1 is a4
which leads to actionless state S4.

At step 435, the second indicator of row 2 is also set to
invalid and the first indicator is set to complete:

10

35

40

45

55

o
o

It is determined at step 300 that the row currently being
processed (row 2) is less than the number of migration paths
identified which is 3. Since all second indicators have not
been set (step 320), x is set to the value of the fmp 2 at step
330 (FIG. 4g)—i.c. 2.

The system moves to migration path 2 and since the test
at step 410 is false, processing proceeds to FIG. 4f. X does
not equal the number of migration paths identified (step
600). The fmp now has the same value as x and so the fmp
is incremented by 1 (to 3) at step 605. X is also incremented
to 3 (step 610).

The system moves to path 3 (step 400, FIG. 45) and since
the path is incomplete and not invalid (step 410), the current
migration path is set to the migration path for the current row
(R0-20-S0-a2-S2) at step 420.

It is determined at step 430 of FIG. 4¢ whether there is at
least one action to advance from the last state in the
migration path to either the resultant state or a non-action-
less state which has not appeared in the migration path
before and does not exist in list 3. In this instance there is,
a5 and so this action is chosen and is added along with the
resulting state S5 to the migration path for row 3 (step 440).
The added action and state and now locked to changes.

Path Id Migration Path 1st Indicator ~ 2nd Indicator
1 R0-a0-80-a3-83 C I
2 R0-a0-80-a1-S1 C I
3 RO-a0-80-a2-82-a5- I
S5

S5 is not the resultant state (step 450) and there is only the
one action to advance to S5 (step 470), thus processing
proceeds to FIG. 4e where it is determined whether the row
currently being processed is less than the number of migra-
tion paths identified (step 300). The answer is no and so X is
set to the value of fmp which is 3. The system then moves
to row 3 (step 400, FIG. 45). At step 410 of FIG. 45, it is
determined that that the path is incomplete and not invalid.
The current migration path is thus set at step 420 to the
migration path for the current row (R0-20-S0-a3-S2-a5-S5)

It is determined at step 430 that action a6 will advance
from state S5 to R1. This action and state are chosen (step
440) and are added to the migration path for row 3.

This time the state R1 is the resultant state (step 450) and
so the first indicator for the current row (idl)) is set to
complete and the second indicator (id2,) is set to valid (step
460):

Path Id Migration Path 1st Indicator ~ 2nd Indicator
1 R0-a0-80-a3-83 C I
2 R0-a0-80-a1-S1 C I
3 RO-a0-80-a2-82-a5- C A%
§5-a6-R1

There is not more than one action (step 470) and the row
being processed (3) is equal to the number of migration
paths identified (step 300). X is thus set to the value of fmp
3 at step 310 of FIG. 4g.

US 9,471,608 B2

11

Processing moves to migration path 3 (step 400, FIG. 456)
and it is determined at step 410 that as this row’s migration
path is complete and valid, processing should move to FIG.
4f. X now equals the number of migration paths identified
(step 600) and so it is determined at step 700 whether there
is at least one valid migration path to present to the user. The
answer is yes and so this migration path is presented to the
user at step 910 and processing ends.

The above applies when an action does not exist to
advance a record directly from the redundant state but there
is a valid migration path.

It should be appreciated that a special form of example
one is where the user selects to progress straight from the
redundant state to the resultant state. This results a positive
test at step 810 and consequently the processing of step 820
is performed.

EXAMPLE 2

Dotted line 1 in FIG. 7a indicates the example in which
an action does exist to migrate from the redundant state to
a valid migration path:

The user chooses the same redundant state for deletion R0
and the same resultant state R1 at steps 100, 110.

Once again, a migration path array (mpa) is defined at step
120 and the same variables are initialised as before at step
130. The redundant state 140 is assigned to the migration
path attribute in mpa,, row 1, and the path id (pid,) is set to
1 also. List L0 is set to the list of all actions in the source
schema which can advance from the redundant state to the
resultant state or non-actionless state which also exists in the
target schema (step 150). In this example, L0 includes action
a2.1. This time around the test at step 160 is true. Step 200
of FIG. 4/ dictates that all states which can be reached by all
actions in list L.O should now be listed. In this example, the
only state to be listed is S2. Thus state S2 is chosen at step
210 and is appended along with its associated action in list
L0 to both the current migration path and the migration path
(mp,) for row x. The action by which S2 is reached from the
redundant state is also added to both the cmp and also the
row. Since S2 is not the resultant state (step 220), the first
indicator is set to incomplete in row 1:

Path Id Migration Path 1st Indicator 2nd Indicator

1 R0-a2.1-82 I

Should the state chosen have been the resultant state, the
first indicator would have been set to complete and the
second indicator to valid in the first row (step 235).

There is only one action in list LO and so processing
proceeds from step 240 to FIG. 4e. The row currently being
processed is not less than the number of migration paths
identified (step 300) and so processing now moves to FIG.
4g where x is set to 1 which is the value of the fmp (step
310). The system moves to row 1 (step 400 of FIG. 45) and
it is determined that the path is incomplete and not invalid
at step 410. The current migration path is set to RO-42.1-S2
at step 420.

At step 430, it is determined that action a5 advances state
S2 to state S5. S2 and a5 are therefore chosen and added to
the migration path for row 1. The added action and state are
now locked to changes.

10

15

20

25

30

35

40

45

50

55

60

65

12

Path Id Migration Path 1st Indicator 2nd Indicator

1 RO-a2.1-82-a5-S5 I

S5 is not the resultant state (step 450) and there is only one
action to progress from S2 to S5 (step 470), consequently
processing proceeds to FIG. 4e.

At step 300 a determination is made as to whether x (1)
is less than the number of migration paths identified (1). As
the answer is no, processing moves to FIG. 4g where x is set
to 1 (step 310).

The system moves to row 1 (step 400) and it is determined
that the path is incomplete and not invalid at step 410.
Consequently the current migration path is set to the migra-
tion path for the current row (R0-a2.1-S2-a5-S5) at step 420.

It is determined at step 430 (FIG. 4c¢) that action a6
advances state S5 to the resultant state. a6 and R1 are
therefore chosen and added to row x at step 440. R1 is the
resultant state (step 450) and so the first indicator is set to
complete and the second indicator to valid:

Path Id Migration Path 1st Indicator ~ 2nd Indicator
1 R0-a2.1-82-a5-85- C A%
a6-R1

There is only one action to advance from S5 to the
resultant state or a non-actionless state (step 470) and so
processing proceeds to FIG. 4e. X is not less than the
number of migration paths (step 300) and so x is set to 1 at
step 310 of FIG. 4g. Note that the fmp still reads 1 even
though the first row is now marked as complete. The system
moves to row 1 (step 400) and this time the determination at
step 410 is false. The number of migration paths is equal to
x (step 600) and so it is determined at step 700 whether there
is at least one valid migration path to present to the user.
These are then presented to the user to the user (step 910)
and processing ends.

EXAMPLE 3

In this example, an action does not exist to advance from
the redundant state, and the action selected does not lead to
a valid migration path. This is indicated by dotted line 3 in
FIG. 7b.

There are no actions in List LO (step 160) and so pro-
cessing proceeds to FIG. 4/, step 750. The second indicator
in row 1 is not set and so all states in list [.1 are presented
(this list was initialised at step 130 of FIG. 4a). In this
example, the user selects state S3 (step 770) and all actions
which can result in S3 are presented—i.e. a3 (step 780). a3
is selected by the user at step 790 and the state and action are
added to the current migration path and the mp attribute of
row 1 (step 800). State S3 is not the resultant state (step 810)
and so the first indicator in row X is set to incomplete at step
830:

Path Id Migration Path 1st Indicator 2nd Indicator

1 R0-a3-S3 I

The system then advances row 1 of FIG. 4b (step 400).
The path is incomplete and not invalid (step 410). The
current migration path is set to the migration path for the

US 9,471,608 B2

13

current row—i.e. R0-a3-S3 at step 420. The determination at
step 430 (FIG. 4c¢) is false. Consequently the second indi-
cator is set to invalid and the first indicator is set to complete
(step 435):

Path Id Migration Path 1st Indicator 2nd Indicator

1 R0-a3-S3 C I

14

(step 150) and since there is at least one action in L0
processing proceeds to FIG. 4;.

At step 200 state S1 is listed at step 200. At step 210, S1
is appended (along with action al.1) to the current migration
path and the migration path attribute at row x. As this is not
the resultant state (step 220), the first indicator is set to
incomplete (step 230):

The row currently being processed (row 1) is not less than
the number of migration paths (step 300) and so X is set to
1 at step 310 of FIG. 4g.

The system moves to row x (step 400). The determination
at step 410 is false. The number of rows (1) is equal to the
number of migration paths identified (1). There is therefore
no valid migration path to present to the user (step 700). This
time the current point in the processing is as a result of a
state selected from list L1 (step 710). Thus the selected state
(i.e. S3) is removed from L1 and added to list L3 (step 720).
An error message that there is not a valid migration path to
the resultant state using the state removed from L1, is
presented to the user (step 740). Processing loops round to
FIG. 4a to try and find a valid migration path.

The system variables have the following values:

cmp=R0

L0 is empty

L1=S0, 81, S2, S5, R1

L3=S3

At step 160 of FIG. 4a, it is determined that there is not
at least one action in list L.O. Processing therefore proceeds
to FIG. 4. The second indicator is set (step 750) and so one
is added to x (x now equals 2);

anew row is added to the migration path array (mpa) with
path id (pid,) set to 2;

the cmp is set to the Redundant state and the nmp is set
to equal x. At step 760 all states in L1 are presented:

S0, S1, S2, S5, R1 and the user selects a state at step 770
(e.g. S0). At step 780 all actions which can lead to SO are
presented—i.e. a0. At step 790, the user selects the action
and at step 800 this is added to the current migration path
which now becomes R0-a0-S0. It is determined at step 810
whether the resultant state has been reached and since the
answer is no, the first indicator is set to incomplete at step
820 and processing advances to FIG. 4b. The migration path
array now looks as follows:

Path Id Migration Path 1st Indicator 2nd Indicator
1 R0-a3-83 C I
2 R0-a0-S0 I

Processing subsequently continues in the same way as
example 1.

EXAMPLE 4

The final example is described in which there is an action
from the redundant state R0 to a non-actionless state but it
is part of an invalid migration path. This is shown by dotted
line 2 in FIG. 7a.

Once again a migration path array is defined (step 120),
the appropriate variables are initialised (step 130), the redun-
dant state R0 is assigned to the migration path in row 1 and
the path id is set to 1 (step 140). List L0 includes action al.1

10

15

25

30

35

40

50

55

60

65

Path Id Migration Path 1st Indicator 2nd Indicator

1 RO-al.1-S1 I

There is only one action in .0 and so processing moves
to FIG. 4e. The row currently being processed is not less
than the number of migration paths (step 300) and so x is set
to 1 at step 310 of FIG. 4g.

The system moves to row 1 (step 400, FIG. 45) and it is
determined that row 1 is incomplete and not invalid (step
410). Thus the current migration path is set to the migration
path for the current row at step 420 (R0-al.1-S1) and it is
determined at step 430 that there is no action to advance to
a non-actionless state or the resultant state (step 430). Thus
the first indicator is set to complete and the second indicator
is set to invalid at step 435:

Path Id Migration Path 1st Indicator 2nd Indicator

1 RO-al.1-S1 C I

The determination at step 300 is false and so x is set to 1
at step 310 of FIG. 4g. Processing moves to row 1 (step 400)
where it is determined that the path is incomplete but invalid
(step 410).

At step 600 (FIG. 4f), it is determined that x is equal to the
number of migration paths identified. At step 700 it is
determined that there are no valid migration paths to present
to the user.

Since the route followed was as a result of an action
selected from list LO (step 710), the selected action al.l1 is
removed from list L0 and the state the action would have
resulted in is added to L3 (step 720). At this point an error
message is displayed indicating that the state added to list L3
is invalid—there is not a valid migration path to resultant
state using this state (step 740). Processing then carries on
to FIG. 4a to look for a valid migration path. Note that the
choice of future actions will not include any which result in
a state in list L3 (see step 430 of FIG. 4c¢).

Thus, as a result of the processing described above, the
user is presented with a list of valid migration paths to select
from. The selection of a valid migration path creates an
interim schema such as the one shown in FIG. 75.

The processing described above will ensure that the
migration of data from a source schema to a target schema
will adhere to rules defined in the interim schema and then
the target schema of FIG. 7c.

The update of a source schema in order to create interim
and target schemas, as well as the migration of data records
in an associated database, are achieved via various schema
update and data migration scripts. The creation of these
scripts is illustrated in FIGS. 5a, 56 and 5c.

The selected migration path is accessed at step 1000.
Looking at the interim schema of FIG. 75, this might be:

R0-a0-S0-a2-S2-a5-S5-a6-R1

US 9,471,608 B2

15

a0 is classed as an interim migration action because it did not
exist as part of the source schema but had to be chosen from
the list of available actions that existed in the source schema.

Once the migration path has been chosen, an entry is
made in an interim schema update (isu) script such that when
the script is run, the redundant state is marked as such (step
1010). This is shown in FIG. 8.

At step 1020, an interim data migration (idm) script has
a command included which when executed will identify all
records in the redundant state.

It is determined at step 1030 whether the first action in the
migration path (i.e. a0) is the interim migration action. In
this case the answer is yes and so the isu script is updated
such that when executed it allows the interim migration
action to be performed on the redundant state (step 1040).

Processing then proceeds via S to FIG. 55, step 1050. If
the test at step 1030 had proved negative, then processing
would have proceed via T to FIG. 5¢, step 1120.

At step 1120, it is determined whether the version of the
first action in the migration path is chosen from the target
schema. If the answer is yes, then the instruction to update
the action to this version is moved from the tsu script to the
isu script so the new version of the action becomes valid in
the interim schema (step 1130). Processing then proceeds
via U to FIG. 556 (as indeed it would have, if the test at step
1120 had proved negative).

It is determined at step 1050 whether the version of the
next state only exists in the target schema. If the answer is
yes, then the instruction to update the state to this version is
moved from the tsu script to the isu script so that the new
version of the state becomes valid in the interim (step 1060).
Processing then proceeds to step 1070 (as indeed it would
have, if the test at step 1050 had proved negative).

At step 1070, the idm is updated such that when executed,
the first action will be performed on all redundant records.

The tsu is then updated such that when executed the
redundant state is removed from the target schema (step
1080).

Step 1100 is performed until the end of the migration path
is reached (step 1090). Step 1100 involves adding an instruc-
tion to perform the next action on all redundant records to
the tdu script.

When instructions for all actions in the migration path
have been added, all scripts are saved (step 1110) and
processing ends.

As shown in FIG. 6, when it is time to upgrade the source
schema to a target schema and to migrate records in the
redundant state to a valid state, the saved scripts are then
executed (steps 1200, 1210, 1220, 1230).

Executing the saved scripts in the order specified will
result in all records in a redundant state being upgraded to
a new valid state, in conformance with the target schema
(FIG. 7c).

Thus the solution disclosed preferably defines a migration
path for every redundant state, by the person (Schema
Administrator) who is deleting the state. This is the right
person to identify the correct migration path for the redun-
dant state as their role understands the rules associated with
the schema and the impact of any change to these rules. The
preferred embodiment also automatically generates the
scripts to update both the schema and the underlying data,
ensuring that data integrity is maintained throughout the
migration and completely removing the need for any addi-
tional migration steps during a schema update.

5

10

15

20

25

30

45

50

55

60

65

16

One benefit of the approach described is that schema
changes can be batched together and executed together.

The invention claimed is:

1. A method for migrating records in a database from a
source database schema to a target database schema, the
method comprising:

receiving a request to delete a state from the source

database schema;

marking said state as a redundant state indicating said

state requested to be deleted;

identifying a resultant state present in the target database

schema to which to migrate database records in the
redundant state;

defining a migration path array having a plurality of

attributes including a migration path attribute begin-
ning with the redundant state;

defining a plurality of variables including a current migra-

tion path variable set to the redundant state, a number
of migration paths variable identifying a number of
rows in the migration path array, a first incomplete
migration path variable, a variable listing the resultant
state and all other non-actionless states in the target
database, and a variable indicating states that do not
lead to a valid migration path;

calculating a valid migration path between the redundant

state and the resultant state using the defined variables
and defined migration path array; and

using the valid migration path to migrate database records

in the redundant state to the resultant state, in accor-
dance with the target database schema.

2. The method of claim 1, wherein the step of identifying
the resultant state to which to migrate database records in the
redundant state comprises:

receiving user input indicating a desired resultant state.

3. The method of claim 1, wherein the step of calculating
the valid migration path between the redundant state and the
resultant state comprises:

identifying one or more valid and invalid migration paths,

wherein a migration path is invalid when it does not
permit migration to the resultant state.
4. The method of claim 1, further comprising:
presenting a user with at least one valid migration path
between the redundant state and the resultant state; and

permitting the user to select the valid migration path to
which to migrate database records in the redundant
state.

5. The method of claim 1, wherein the step of calculating
the valid migration path between the redundant state and the
resultant state comprises:

determining whether an action exists in the source data-

base schema to advance a record from the redundant
state to a first state in a possible migration path.

6. The method of claim 5, further comprising:

responsive to a negative determination, presenting a user

with one or more actions, said one or more actions
being those which advance from the state in the source
database schema to the first state; and

permitting the user to select one of the presented actions

to form part of the possible migration path.

7. The method of claim 5, further comprising:

responsive to determining that the action exists in the

source database schema to advance the record from the
redundant state to the first state in the possible migra-
tion path, presenting for selection to the user the action
in the source database schema which exists to advance
the record from the redundant state to the first state.

US 9,471,608 B2

17

8. The method of claim 5, further comprising:

determining whether a selected first state is part of the

valid migration path; and

responsive to a negative determination, requesting the

user to select another first state.

9. The method of claim 1, wherein the redundant state is
marked as redundant in an interim schema.

10. The method of claim 9, wherein the redundant state is
actionless, the method comprising:

using the interim schema to permit database records in the

redundant state to be moved between the redundant
actionless state and the first state.

11. The method of claim 10, further comprising:

migrating database records in the redundant state to the

first state in accordance with the interim schema.

12. The method of claim 1, further comprising:

creating the target database schema by which to migrate

database records in accordance with, the redundant
state being absent from the target database schema.

13. The method of claim 1, wherein the step of using the
valid migration path to migrate database records in the
redundant state to the resultant state comprises: identifying
database records in the redundant state.

14. An apparatus for migrating records in a database from
a source database schema to a target database schema, the
apparatus comprising:

a computer system having a processor configured to

receive a request to delete a state from the source
database schema;

mark said state as a redundant state indicating said state
requested to be deleted;

identify a resultant state present in the target database
schema to which to migrate database records in the
redundant state;

define a migration path array having a plurality of
attributes including a migration path attribute begin-
ning with the redundant state;

define a plurality of variables including a current
migration path variable set to the redundant state, a
number of migration paths variable identifying a
number of rows in the migration path array, a first
incomplete migration path variable, a variable listing
the resultant state and all other non-actionless states
in the target database, and a variable indicating states
that do not lead to a valid migration path;

calculate a valid migration path between the redundant
state and the resultant state using the defined vari-
ables and defined migration path array; and

migrate database records in the redundant state to the
first state in accordance with the interim schema.

15. The apparatus of claim 14, wherein the processor is
further configured to receive user input indicating a desired
resultant state.

16. The apparatus of claim 14, wherein the processor is
further configured to identify one or more valid and invalid
migration paths, wherein a migration path is invalid when it
does not permit migration to the resultant state.

17. The apparatus of claim 14, wherein the processor is
further configured to:

present a user with at least one valid migration path

between the redundant state and the resultant state; and
permit the user to select the valid migration path to which
to migrate database records in the redundant state.

18. The apparatus of claim 14, wherein the processor is
further configured to determine whether an action exists in
the source database schema to advance a record from the
redundant state to a first state in a possible migration path.

10

25

40

45

18

19. The apparatus of claim 18, wherein the processor is
further configured to:

responsive to a negative determination, present the user

with one or more actions, said one or more actions
being those which advance from the state in the source
database schema to the first state; and

permit the user to select one of the presented actions to

form part of the possible migration path.

20. The apparatus of claim 18, wherein the processor is
further configured to:

responsive to determining that the action exists in the

source database schema to advance the record from the
redundant state to the first state in the possible migra-
tion path, present for selection to the user the action in
the source database schema which exists to advance the
record from the redundant state to the first state.

21. The apparatus of claim 18, wherein the processor is
further configured to:

determine whether a selected first state is part of the valid

migration path; and

responsive to a negative determination, present the user to

select another first state.

22. The apparatus of claim 14, wherein the redundant state
is marked as redundant in an interim schema.

23. The apparatus of claim 22, wherein the redundant state
is actionless, the processor is further configured to:

use the interim schema to permit database records in the

redundant state to be moved between the redundant
actionless state and the first state.

24. The apparatus of claim 22, wherein the processor is
further configured to:

migrate database records in the redundant state to the first

state in accordance with the interim schema.

25. The apparatus of claim 14, wherein the processor is
further configured to:

create the target database schema by which to migrate

database records in accordance with, the redundant
state being absent from the target database schema.

26. The apparatus of claim 14, wherein the processor is
further configured to identify database records in the redun-
dant state.

27. A non-transitory computer readable storage medium
having stored thereon a computer program comprising pro-
gram code adapted to perform a method when said program
is run on a computer, the method comprising:

receiving a request to delete a state from a source database

schema;

marking said state as a redundant state indicating said

state requested to be deleted;

identifying a resultant state present in the target database

schema to which to migrate database records in the
redundant state;

defining a migration path array having a plurality of

attributes including a migration path attribute begin-
ning with the redundant state;

defining a plurality of variables including a current migra-

tion path variable set to the redundant state, a number
of migration paths variable identifying a number of
rows in the migration path array, a first incomplete
migration path variable, a variable listing the resultant
state and all other non-actionless states in the target
database, and a variable indicating states that do not
lead to a valid migration path;

calculating a valid migration path between the redundant

state and the resultant state using the defined variables
and defined migration path array; and

US 9,471,608 B2
19

using the valid migration path to migrate database records
in the redundant state to the resultant state, in accor-
dance with the target database schema.

#* #* #* #* #*

20

